Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine N-methyltransferase-deficient mice.

نویسندگان

  • Jelske N van der Veen
  • Susanne Lingrell
  • Xia Gao
  • Ariel D Quiroga
  • Abhijit Takawale
  • Edward A Armstrong
  • Jerome Y Yager
  • Zamaneh Kassiri
  • Richard Lehner
  • Dennis E Vance
  • René L Jacobs
چکیده

Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt(-/-) mice are protected against high-fat diet (HFD)-induced obesity and insulin resistance; however, these mice develop nonalcoholic fatty liver disease (NAFLD). We hypothesized that peroxisomal proliferator-activated receptor-γ (PPARγ) activation by pioglitazone might stimulate adipocyte proliferation, thereby directing lipids from the liver toward white adipose tissue. Pioglitazone might also act directly on PPARγ in the liver to improve NAFLD. Pemt(+/+) and Pemt(-/-) mice were fed a HFD with or without pioglitazone (20 mg·kg(-1)·day(-1)) for 10 wk. Pemt(-/-) mice were protected from HFD-induced obesity but developed NAFLD. Treatment with pioglitazone caused an increase in body weight gain in Pemt(-/-) mice that was mainly due to increased adiposity. Moreover, pioglitazone improved NAFLD in Pemt(-/-) mice, as indicated by a 35% reduction in liver weight and a 57% decrease in plasma alanine transaminase levels. Livers from HFD-fed Pemt(-/-) mice were steatotic, inflamed, and fibrotic. Hepatic steatosis was still evident in pioglitazone-treated Pemt(-/-) mice; however, treatment with pioglitazone reduced hepatic fibrosis, as evidenced by reduced Sirius red staining and lowered mRNA levels of collagen type Iα1 (Col1a1), tissue inhibitor of metalloproteinases 1 (Timp1), α-smooth muscle actin (Acta2), and transforming growth factor-β (Tgf-β). Similarly, oxidative stress and inflammation were reduced in livers from Pemt(-/-) mice upon treatment with pioglitazone. Together, these data show that activation of PPARγ in HFD-fed Pemt(-/-) mice improved liver function, while these mice were still protected against diet-induced obesity and insulin resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice.

OBJECTIVE Impaired hepatic phosphatidylcholine (PC) synthesis lowers plasma lipids. We, therefore, tested the hypothesis that lack of phosphatidylethanolamine N-methyltransferase (PEMT), a hepatic enzyme catalyzing PC biosynthesis, attenuates the development of atherosclerosis. METHODS AND RESULTS Mice deficient in both PEMT and low-density lipoprotein receptors (Pemt(-/-)/Ldlr(-/-) mice) wer...

متن کامل

Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase[S]

Mice lacking phosphatidylethanolamine N-methyltransferase (PEMT) are protected from high-fat diet (HFD)-induced obesity and insulin resistance. However, these mice develop severe nonalcoholic fatty liver disease (NAFLD) when fed the HFD, which is mainly due to inadequate secretion of VLDL particles. Our aim was to prevent NAFLD development in mice lacking PEMT. We treated Pemt-/- mice with eith...

متن کامل

Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis.

Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challe...

متن کامل

Pioglitazone attenuates aging-related disorders in aged apolipoprotein E deficient mice

Pioglitazone (Piog) activates peroxisome proliferator activated receptor-γ (PPARγ) and is widely used in clinic for the treatment of diabetes mellitus. PPARγ in various tissues has the essential regulatory role of multiple metabolic function, suggest that PPARγ signaling may contribute to aging processes. However, little is known about the consequences of Piog on aging in aged animal models. We...

متن کامل

TLR4‑dependent signaling pathway modulation: A novel mechanism by which pioglitazone protects against nutritional fibrotic steatohepatitis in mice.

Activation of the innate immune system is involved in the development of chronic liver diseases, including nonalcoholic steatohepatitis. Toll‑like receptor 4 (TLR4) is one of the sensors of the innate immune system. The aim of the present study was to elucidate the role of the TLR4‑dependent signaling pathway, and examine the effect of pioglitazone on hepatic fibrosis, through modulation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 310 7  شماره 

صفحات  -

تاریخ انتشار 2016